Improvement of Expression of α6 and β1 Integrins by the Co-culture of Adult Mouse Spermatogonial Stem Cells with SIM Mouse Embryonic Fibroblast Cells (STO) and Growth Factors
نویسندگان
چکیده
OBJECTIVE(S) Spermatogonial Stem Cells (SSCs) maintain spermatogenesis throughout the life of the male. Because of the small number of SSCs in adult, enriching and culturing them is a crucial step prior to differentiation or transplantation. Maintenance of SSCs and transplantation or induction of in vitro spermio-genesis may provide a therapeutic strategy to treat male infertility. This study investigated the enrichment and proliferation of SSCs co-cultured with STO cells in the presence or absence of growth factors. MATERIALS AND METHODS Spermatogonial populations were enriched from the testis of 4-6 week-old male mice by MACS according to the expression of a specific marker, Thy-1. Isolated SSCs were cultured in the presence or absence of growth factors (GDNF, GFRα1 and EGF) on STO or gelatin-coated dishes for a week. Subsequently, the authors evaluated the effects of growth factors and STO on SSCs colonization by alkaline phosphates (AP) activity and flow cytometery of α6 and β1 integrins. RESULTS SSCs co-cultured with STO cells and growth factors developed colonization and AP activity as well as expression of α6 and β1 integrins (P≤0/05). CONCLUSION Our present SSC-STO co-culture provides conditions that may allow efficient maintenance and proliferation of SSCs for the treatment of male infertility.
منابع مشابه
Improvement of Expression of α6 and β1 Integrins by the Co-culture of Adult Mouse Spermatogonial Stem Cells with SIM Mouse Embryonic Fibroblast Cells (STO) and Growth Factors
متن کامل
Evaluation and Comparison of the Expression Levels of the ZBTB16 (Plzf) and ZFP Genes and Alkaline Phosphatase in Three Cell Populations: Mouse Spermatogonial Stem Cells, Embryonic Stem-Like Cells (Es-Like), And Embryonic Stem Cells
Introduction: One of the vital enzymes during spermatogenesis, which is one of the pluripotency factors of stem cells and contributes to maintaining their pluripotency is alkaline phosphatase. ZBTB16 and ZFP proteins are critical elements in stem cells which are expressed in pluripotent stem cells and maintain their pluripotency due to their role in messaging pathways. Material & Methods: The ...
متن کاملEffects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells
Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...
متن کاملIn vitro germ cell differentiation from embryonic stem cells of mice: induction control by BMP4 signalling
The present study aims to confirm and analyze germ-cell related patterns and specific gene expressions at a very early stage of cell commitment. Following the XY cytogenetic confirmation of the CCE mouse embryonic stem cells (mESCs) line, cells were cultured to form embrioid bodies (EBs). Expression pattern assessment of the Mvh, Stra8, α6 and β1 integrin genes in ESC and 1-3-day-old EB showed ...
متن کاملExperimental Investigation of Ki67, POU5F1, and ZBTB16 Expression in the Pig and Mouse Testicular Cells using Immunocytochemistry and RT-PCR
Introduction: Spermatogonial Stem Cells (SSC) are the originators and beginning points of the spermatogenesis process. Moreover, they are considered the only stem cells in the body that could transfer genetic information to the next generation through gametogenesis. This study aimed to investigate the potency and power of SSC under in vitro and in vivo conditions. Materials & Methods: Enzym...
متن کامل